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Abstract
The level set method is a common approach for handling moving boundary problems,
which allows a moving, irregular surface to be described implicitly on a Cartesian grid.
This approach often requires reinitialization of the level set function and extrapolation of
fields defined only on the interface. Because many applications in physics and engineering
involve calculation of second derivatives of the interface curvature and fourth order deriva-
tives of surface fields, accurate simulations of these problems require high-order methods for
reinitialization and extrapolation. Here we build off WENO schemes for Hamilton–Jacobi
equations to develop novel sixth-order accurate methods for reinitialization and extrapola-
tion. We present numerical results in three dimensional spaces demonstrating fourth-order
accuracy of the interfacial curvature and sixth-order accuracy for the extrapolated surface
fields. We then show that the extrapolation scheme can be integrated into the closest point
method for surface PDEs and present an example of computing geodesic curves on surfaces.

Keywords Level set method · Fourth-order accurate curvature · Reinitializaion equation

Mathematics Subject Classification 35F21 · 65M06

1 Introduction

A wide range of natural phenomena involves the motion of dynamic interfaces. When an
elastic ball hits a rigid wall, its shape deforms. A fish undulates in order to swim. The
surface of a soap bubble quivers from the air currents that keep it afloat. Beams bend, flags
flutter, and seas swell. Even the membranes of the cells that comprise our bodies ruffle,
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protrude, invaginate, and pinch off. In some cases, the motions of these interfaces involve
the dynamics of surface bound components, such as the proteins and lipids that diffuse and
react on cell membranes. The level set method, introduced by Osher and Sethian [21], is
an extremely simple and elegant numerical framework for these kinds of problems [16,24].
Still, mathematically modeling dynamics in these problems can be challenging when high-
order, nonlinear partial differential equations are involved. For instance, the force density
for a thin elastic surface with bending rigidity is proportional to the Laplacian of the mean
curvature of the surface [13]. Simulation of thin surfaces, such as cell membranes, then
requires calculation of second order derivatives of the surfacemean curvature, which includes
fourth order derivatives of the surface position [13]. The Cahn–Hillard equation describing
phase separation on a surface, as occurs in the formation of lipid rafts [25], leads to fourth
order derivatives of an order parameter [10]. To accurately capture these dynamics in the
level set framework, convergent methods for fourth order derivatives of the level set function
and the surface fields are necessary, which requires the level set function to be locally smooth
and the extrapolation scheme to be very accurate. Existing methods do not provide sufficient
accuracy to address these types of problems [7,11]. Therefore, we develop a method here
that can be used accurately preserve geometric properties, such as high order derivatives of
the shape, of dynamic interfaces and can also be used to extrapolate information defined on
those surfaces.

In practice, a moving interface is usually represented implicitly as the zero level set Γ (t)
of a signed distance function φ(x, t) in the embedding space R

n (n = 2 for a curve and
n = 3 for a surface), i.e., Γ (t) = {x | φ(x, t) = 0, x ∈ R

n}. The dynamics of Γ (t) under a
velocity field V is then captured by the level set equation [21]:

∂φ

∂t
+ V · ∇φ = 0. (1)

Smoothness of the level set function is not guaranteed by Eq. (1). To restore smoothness,
Sussman [28] introduced the reinitialization equation:

∂φ

∂τ
+ Sign(φ0)(|∇φ| − 1) = 0 (2)

where φ0 is the initial value of φ and τ is a fictitious time parameter. Eq. (2) restores φ to
a signed distance function when iterated to equilibrium. To extrapolate surface fields away
from the surface, a hyperbolic PDE advecting c in the normal direction is solved [22]:

∂c

∂τ
+ Sign(φ)N · ∇c = 0 (3)

where N ≡ ∇φ/|∇φ| is the normal of the interface and c represents the scalar field that is
being extended away from the surface.

Both Eqs. (2) and (3) are Hamilton–Jacobi equations with initial and boundary conditions

∂ψ

∂τ
+ H(ψ,∇ψ) = 0 (4)

where H is the corresponding Hamiltonian. Successful techniques for solving Hamilton–
Jacobi equations depend on construction of the numericalHamiltonian [2], time discretization
[26] and space discretization [14,15], and accurate methods have been developed and exten-
sively tested numerically. For spatial discretization, the weighted, essentially-non-oscillatory
(WENO) scheme is often used [14]. This method uses divided differences to determine the
smoothness of various approximations to the first derivative, and then weights the various
approximations to achieve a smooth, and potentially fifth-order accurate, estimate of the
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derivative. While this scheme works well when solving the level set equation (Eq. (1)), appli-
cation of the WENO scheme to the reinitialization equation (Eq. (2)) can yield poor results
[14]. The reason for the poor accuracy was pointed out by Russo and Smereka [23], and
they developed a second order accurate remedy by modifying the treatment of Eq. (2) near
the boundary. Based on the results of Russo and Smereka, Chéné and Min [7] obtained a
fourth order accurate reinitialization scheme by adopting a cubic ENO interpolation near the
boundary and an HJ-WENO scheme away from the boundary.

In this paper, we further develop the ideas in [23] and [7] to design a novel sixth-order
accurate scheme forHamilton–Jacobi equationswith boundary condition specified at the zero
of a level set function. Note that because Eqs. (2, 3) are hyperbolic, information defined at
the zero level set is propagated away from the implicit boundary and an additional boundary
condition at the edge of the computational domain is not needed. This paper is organized
as follows. In Sect. 2, we briefly introduce numerical discretization of level set-defined
geometries and some calculus tools. In Sect. 3, we reviewWENO schemes of Jiang and Peng
for Hamilton–Jacobi equations and present our treatment of boundary nodes in Sect. 3.2. The
central idea is to use high order interpolation to locate the exact boundary [7] and interpolate
values on the boundary and then calculate WENO derivatives on a nonuniform stencil near
boundary nodes. In Sect. 4, we present numerical results of our scheme. First, we show that
we can solve the reinitialization equation (Eq. (2)) with sixth-order accuracy and interface
curvature can be computed with fourth-order accuracy, which then provides a convergent
scheme for calculating bending forces of soft objects that depend on second order derivatives
of interface curvature. Next, we show that Eq. (3) can be solved with sixth-order accuracy and
we are able to compute BiLaplacian of a surface field with second-order accuracy. Finally,
we show that the extrapolation procedure can be integrated into the closet point method [19]
and give an example for computing geodesics on curved surfaces.

2 Discretization of Geometries in the Level Set Framework

A strength of the level set formalism is that it allows irregular surfaces to be defined implicitly
on a regular grid, such as a simple, rectangular Cartesian grid. Computing geometric proper-
ties of an implicit interface represented by the level set function φ(x, y, z) is thenmuch easier
than that for a triangulated surface. Most of the geometrical information about the interface
is encoded in the gradient ∇φ and Hessian H(φ) of φ, which in Cartesian coordinates are
defined as

∇φ = (
φx φy φz

)
(5)

Hessian(φ) =
⎛

⎝
φxx φxy φxz

φyx φyy φyz

φzx φzy φzz

⎞

⎠ (6)

For example, the interface normal N and mean curvature KM are [9]

N = ∇φ

|∇φ|
and

KM = −|∇φ|2 Trace(Hessian) + ∇φ ⊗ Hessian(φ) ⊗ (∇φ)T

|∇φ|3 (7)
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where we used the convention that the mean curvature for a unit sphere is −2. The interface
Gaussian curvature K is [9]

K = ∇φ ⊗ Hessian∗(φ) ⊗ (∇φ)T

|∇φ|4 (8)

where Hessian∗(φ) is the cofactor matrix of the Hessian matrix. The Laplace–Beltrami oper-
ator Δ‖ on this interface can be defined using

Δ‖ = (∇ − NN · ∇) · (∇ − NN · ∇)

Fields distributed in space can be localized to the interface using the Delta function δ(φ)

supported on a level set. In order to define δ(φ), we follow [30] and define I (φ) =∫ φ

0 H(φ′)dφ′ = max(φ, 0) on the grid. Then the numerical Heaviside function H(φ) and
δ(φ) are computed by

H(φ) = ∇ I · ∇φ

|∇φ|2 (9)

δ(φ) = ΔI (φ) − H(φ)Δφ

|∇φ|2 (10)

The integral of a scalar field f over the interface is then given by a volume integral
∫

f d A =
∫

f δ(φ)|∇φ|dV . (11)

In [3], the level set method is extended to objects with codimension more than one. In
particular, we can use an auxiliary level set function ψ(x, y, z) to represent a curve on the
interface. This curve will be the intersection of the zero level sets of both φ and ψ . The unit
tangent of this embedded curve is

t = ∇φ × ∇ψ

|∇φ × ∇ψ | . (12)

A unit normal for this curve is defined by

n = t × N, (13)

and the geodesic curvature of the curve is

kg = n · {(t · ∇)t} (14)

3 Spatial and Time Discretizations for Hamilton–Jacobi Equations

Hamilton–Jacobi equations (Eq. (4)) involve directionality in the flow of information that
carries the function ψ at one time to its values at later times. As such, it is crucial to use an
upwind spatial discretization along with an accurate time stepping routine. In this section, we
describe the standard spatial and temporal discretization schemes that are used with the level
set method and then provide a detailed description of our modification to the ENO scheme
for non-uniform grids that was originally developed in [7].

All of our computations are carried out on three dimensional Cartesian grids, with the level
set function and its geometry fields (normals, curvatures etc.) defined at the nodes of the grid.
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Fourth order finite difference schemes are used to compute derivatives in Eqs. (5–14). For
instance [4],

φx = 1

12Δx
(−φi+2, j,k + 8φi+1, j,k − 8φi−1, j,k + φi−2, j,k)

φxx = 1

12(Δx)2
(−φi+2, j,k + 16φi+1, j,k − 30φi, j,k + 16φi−1, j,k − φi−2, j,k)

φxy = 1

48ΔxΔy

(−φi+2, j+2,k + 16φi+1, j+1,k + φi−2, j+2,k − 16φi−1, j+1,k

+φi+2, j−2,k − 16φi+1, j−1,k − φi−2, j−2,k + 16φi−1, j−1,k

)
,

with similar constructions for the derivatives along the other directions.

3.1 Spatial Discretization

Equation (4) can be written in a semi-discrete form as

∂ψ

∂τ
+ Ĥ(D−

x ψ, D+
x ψ; D−

y ψ, D+
y ψ; D−

z ψ, D+
z ψ) = 0 (15)

where D±
x ψ, D±

y ψ, D±
z ψ are the one-sided derivatives of ψ and Ĥ(D−

x ψ, D+
x ψ; ...) is

a numerical approximation of H(ψ,∇ψ). Among all monotone schemes to construct Ĥ ,
Godunov schemes introduce the least numerical diffusion and will be used for our solution.
Godunov schemes, however, can be difficult to implement numerically for a general Hamilto-
nian,with specificHamiltonians requiring their own specific treatment. For the reinitialization
equation (Eq. (2)),

H(φ,∇φ) = Sign(φ0)(|∇φ| − 1)

and

Ĥ(D−
x ψ, D+

x ψ; D−
y ψ, D+

y ψ; D−
z ψ, D+

z ψ) = Sign(φ0)
{√

φ2
x + φ2

y + φ2
z − 1

}
(16)

where

φ2
x ≡ max(max(D−

x φ, 0)2,min(D+
x φ, 0)2)

when Sign(φ0) > 0 and

φ2
x ≡ max(min(D−

x φ, 0)2,max(D+
x φ, 0)2)

when Sign(φ0) ≤0. φ2
y and φ2

z are defined similarly. For the extrapolation equation (Eq. (3)),

H(∇c) = Sign(φ)N · ∇c

and

Ĥ(D−
x c, D

+
x c; D−

y c, D
+
y c; D−

z c, D
+
z c) =

∑

i=x,y,z

{min(Vi , 0)D
+
i c + max(Vi , 0)D

−
i c}.

(17)
where we define V ≡ Sign(φ)N . Numerically, Sign(φ) can take a value among 1,−1 and
0. We set Sign(φ) to be zero when abs(φ) < 10−6 × Δx , where Δx is the grid spacing.
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x−3 x−2 x−1 x0 x2 x3 x4x1

boundary curve

Fig. 1 When the boundary passes between nodes x0 and x2, an accurate estimate for the off-grid location of
the boundary x1 is used when calculating the one-sided WENO derivatives for x0 and x2

3.2 One-SidedWENODerivatives on a Nonuniform Grid

Solving the reinitialization equation (Eq. (2)) or extension equation (Eq. (3)), requires forward
and backward one-sided derivatives. For nodes not immediately next to the boundary, the
standard WENO schemes from Jiang [14,15] can be applied to calculate these derivatives.
However, for nodes immediately next to the boundary, special treatments are usually needed
[7,23]. In [7], the subcell fix from [23] was augmented using general ENO reconstructions to
achieve 4th order accuracy. Here, we utilize the conceptual method for converting from ENO
to WENO derivatives in order to further improve the scheme of [7], such that our method
can achieve an optimal 6th order accuracy when solving HJ equations involving level set
defined boundaries conditions. The key point is to develop WENO schemes for non-uniform
grids and then apply this more general WENO scheme to calculate one-sided derivatives for
boundary nodes.

3.2.1 Computation of the Location of the Boundary

In three dimensional space, the boundary defined by the zero level set of φ(x, y, z) is a
two dimensional surface. To compute the one-sided WENO derivatives near the boundary
with sufficient accuracy, we need to locate the points where the zero contour crosses between
grid nodes. We define a grid node at point (x0, y0, z0) to be a boundary node if φ(x0, y0, z0)
differs in sign from any of its six nearest neighbors on the Cartesian grid.

For instance, if φ(x0, y0, z0)φ(x0 + Δx, y0, z0) < 0, both (x0, y0, z0) and (x0 +
Δx, y0, z0) are boundary nodes. To compute D±

x φ at (x0, y0, z0) and (x0 + Δx, y0, z0),
we begin by localizing the crossing between the boundary and the line segment (x0 +
ξΔx, y0, z0), ξ ∈ (0, 1). This is illustrated in Fig. 1, where the boundary passes between x0
and x2 at the location defined as x1. Note that all the nodes shown are grid nodes except for
x1.For this calculation, we are only concerned with the crossing point along the x direction.
Crossing points along the y and z directions are handled in an identical manner.

When φ(x0)φ(x−1) < 0 or φ(x2)φ(x3) < 0, there is a kink near x0 or x2. We then use
(x−1, φ−1), (x0, φ0), (x2, φ2), (x3, φ3) to construct a quadratic ENO polynomial of φ and
the root x1 of this polynomial approximates the boundary location [20]. In particular [20],

x1 =
⎧
⎨

⎩
x0 + Δx

(
1
2 + φ0−φ2−sign(φ0−φ2)

√
D

φ0
xx

)
if |φ0

xx | > 10−10

x0 + Δx φ0

φ0−φ2 else
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where φ0
xx = minmod(φ−1 − 2φ0 + φ2, φ0 − 2φ2 + φ3), D = (φ0

xx/2− φ0 − φ2)
2 − 4φ0φ2

and the minmod function is defined as

minmod(α, β) =
⎧
⎨

⎩

0 if αβ � 0
α if αβ > 0 and |α| � |β|
β if αβ > 0 and |α| > |β|

.

When a kink is not present near x0 and x2, we construct a 5th order Lagrange polynomial
that interpolates through (xi , φi ), i ∈ {−2,−1, 0, 2, 3, 4} and use Brent’s method to find the
root x1 that lies between x0 and x2. Then (x1, φ1 = 0) is included in the stencil to construct
D±
x φ at x0 and x2. For later use, we define Δx+ = x1 − x0, which is the distance between

node (x0, y0, z0) and the boundary along the postie x direction. If the boundary is to the left
of x0 in Fig. 1, this distance is then denoted asΔx−, which will be the distance between node
(x0, y0, z0) and the boundary along the negative x direction. In a similar way, we can define
Δy± andΔz± for the boundary nodes.

For an advected field ψ other than the level set function φ, a Lagrange polynomial l5(x)
interpolating through (xi , ψi ), i ∈ {−2,−1, 0, 2, 3, 4} is constructed and (x1, l5(x1)) will
be included in the stencil to construct D±

x ψ at x0 and x2.
In our analysis, we assumed that the zero level set is sufficiently far off from the boundary

of the grid mesh so that we can always find enough grid points near the boundary to do the
interpolation mentioned above. The accuracy of the boundary location procedure depends on
the smoothness of the boundary and the advected field. Near a kink, the boundary location
can only be determined with first order accuracy and the algorithm is then only first order
accurate [20].

The computation of boundary locations and the interpolation of other advected fields is
carried out in a dimension by dimension manner. This process applies in the same way,
regardless of the dimensionality of the problem.

3.2.2 Computation of WENO Derivatives

To compute the one-sided derivatives at node x0, we begin by defining a seven-point stencil
about this node (Fig. 2). Note that when x0 is a boundary node as is shown in Fig. 1, the
node (x1, ψ1) on the boundary should be included in the stencil, in which case the stencil
will be nonuniform. In all other cases, the stencil is uniform. We maintain full generality by
allowing all of the nodes to be non-uniformly spaced.

To compute D−
x ψ(x0), a left biased stencil S− = {(xi , ψi )|i ∈ {−3,−2,−1, 0, 1, 2}}

should be used. The first step is to break S− into three candidate ENO (essentially non-
oscillatory) stencils S−

i , i = 1, 2, 3 and approximateψ(x) on those stencils with polynomial
interpolations p−

i (x), i = 1, 2, 3. For instance, p−
2 (x) will be a third order polynomial

interpolating through all points in S−
2 = {(xi , ψi )|i ∈ {−2,−1, 0, 1}} and u−

2 ≡ dp−
2 (x)
dx |x=x0

will be a candidate for D−
x ψ(x0) in the ENO scheme. It is straightforward to compute all

u−
i , i = 1, 2, 3 and the results are [27]

u−
1 = ū− 3

2
+

(
x0 − x−1

x−1 − x−3

) (
x0 − x−2

x0 − x−3

) (
ū− 5

2
− ū− 3

2

)

+
(
1 + x0 − x−1

x0 − x−2
+ x0 − x−1

x0 − x−3

) (
ū− 1

2
− ū− 3

2

)

u−
2 = ū− 1

2
+

(
x0 − x−1

x1 − x−2

) (
x0 − x−2

x1 − x−1

) (
ū 1

2
− ū− 1

2

)
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S1
−

S2
−

S3
−

x−2 x−1 x1 x2 x3

ψ−3 ψ−1ψ−2 ψ1 ψ3ψ2

x−3 x0

ψ0
S0

S3
+

S2
+

S1
+

Fig. 2 A general, nonuniform, seven-point stencil, S0, is used to find backward and forward derivatives at x0.
In the WENO scheme, the full stencil is broken into substencils (S±

j ), and the derivative is approximated on
each of these substencils. A weighted average of these approximations is then used to define the forward and
backward WENO derivatives

−
(
x0 − x−1

x1 − x−2

) (
x1 − x0
x0 − x−2

) (
ū− 3

2
− ū− 1

2

)

u−
3 = ū 1

2
+

(
x1 − x0
x2 − x−1

) (
x2 − x0
x1 − x−1

) (
ū− 1

2
− ū 1

2

)

−
(

x1 − x0
x2 − x−1

) (
x0 − x−1

x2 − x0

) (
ū 3

2
− ū 1

2

)
(18)

where ūr+ 1
2
, r ∈ {−3,−2,−1, 0, 1, 1} are first Newton divided differences defined as

ūr+ 1
2

= ψr+1 − ψr

xr+1 − xr
.

The expressions for u+
j can be obtained by the following reflection transformation:

xr → x−r , ūr+ 1
2

→ ū−
(
r+ 1

2

). (19)

In what follows, we will only list formula with superscript − since those with superscript +
can be obtained from reflection using Eq. (19).

In the ENO schemes introduced by Harten and Osher [12], D−
x ψ(x0) is approximated

by the u−
i from Eq. (18), which corresponds to the substencil S−

i where ψ(x) varies most
smoothly. Consequently, ENO schemes approximate D−

x ψ(x0) with only third order accu-
racy on a six point stencil S−, since information from the other substencils are not used.
WENO schemes use the same substencil approximations to the first derivatives, u−

1 , u−
2 , u−

3 ,
but employ a convex combination

∑3
i=1 ω−

i u
−
i of the substencil derivatives to approximate

D−
x ψ(x0), thereby increasing the accuracy up to potentially 5th order [18].
When ψ(x) is smooth over all stencils, the weights ω−

i should approximately cancel
truncation errors in u−

i to achieve optimal accuracy. Let us denote by C−
i weights that will

give the optimal fifth order accuracy for D−
x ψ(x0). In other words, if a fifth order polynomial

p−(x) is constructed to interpolate through all points in S−, the optimal weights C−
i should

satisfy

dp−(x)

dx
|x=x0 = C−

1 u
−
1 + C−

2 u
−
2 + C−

3 u
−
3 ,
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which gives uniquely [27]

C−
1 =

(
x1 − x0
x2 − x−3

)(
x2 − x0
x1 − x−3

)

C−
2 =

(
x0 − x−3

x2 − x−3

) (
x2 − x0
x2 − x−2

+ x2 − x0
x1 − x−3

)

C−
3 =

(
x0 − x−3

x2 − x−3

) (
x0 − x−2

x2 − x−2

)
. (20)

When ψ(x) is not smooth over the full stencil, non-smooth substencils should be given
smaller weights. The smoothness indicator IS−

i for stencil S−
i is a weighted measure of the

integrated square of the 2nd and 3rd derivatives over the substencil, which is given by Jiang
and Shu [15],

IS−
i =

2∑

l=1

∫ x0

x−1

(x0 − x−1)
2l−1

(
dl+1 p−

i (x)

dl+1x

)2

dx,

leading to [27]

IS−
1 = 40(x0 − x−1)

4
(
w̄− 3

2

)2

+4

(
x0 − x−1

x0 − x−3

)2 ( {(x0 − x−2)v̄−2 − (2x0 − x−2 − x−3)v̄−1}
×{(x−1 − x−2)v̄−2 − (x0 + x−1 − x−2 − x−3)v̄−1}

)

IS−
2 = 40(x0 − x−1)

4
(
w̄− 1

2

)2 + 4

(
x0 − x−1

x1 − x−2

)2 ( {(x0 − x1)v̄−1 − (x0 − x−2)v̄0}
×{(x−1 − x1)v̄−1 − (x−1 − x−2)v̄0}

)

IS−
3 = 40(x0 − x−1)

4
(
w̄ 1

2

)2

+ 4

(
x0 − x−1

x2 − x−1

)2 ( {(2x−1 − x1 − x2)v̄0 − (x−1 − x1)v̄1}
×{(x0 + x−1 − x1 − x2)v̄0 − (x0 − x1)v̄1}

)
, (21)

where v̄i and w̄i are second and third Newton divided differences defined by

v̄i ≡ 1

xi+1 − xi−1

(
ūi+ 1

2
− ūi− 1

2

)
, w̄i+ 1

2
≡ 1

xi+2 − xi−1
(v̄i+1 − v̄i ).

Weights that approximate the optimal weights C−
i in smooth regions while suppressing

oscillations in non-smooth regions are then defined by Liu et al. [18]

ω−
j = α−

j
∑3

k=1 α−
k

, α−
j = C−

j

(ε + IS−
j )2

, ε = 10−6.

The WENO derivatives D−
x ψ(x0) are then defined as

D−
x ψ(x0) =

3∑

j=1

ω−
j u

−
j .
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When the grid is uniform, Eqs. (18, 20, 21) reduce to

u−
1 = 1

3
ū− 5

2
− 7

6
ū− 3

2
+ 11

6
ū− 1

2
,C−

1 = 0.1

u−
2 = −1

6
ū− 3

2
+ 5

6
ū− 1

2
+ 1

3
ū 1

2
,C−

2 = 0.6

u−
3 = 1

3
ū− 1

2
+ 5

6
ū 1

2
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− 4ū− 3

2
+ 3ū− 1
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+ ū 3

2

)2 + 1

4

(
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2
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,

which are the canonical formulae for the WENO scheme [14]. We refer the reader to [15]
for a more thorough discussion of WENO schemes and to [27] for WENO schemes on
non-uniform grids.

3.3 Time Discretization

A popular time discretization for Eq. (15) is the third order TVD Runge–Kutta scheme [26]
with the following Euler steps:

ψ̃n+1 = ψn − Δτ Ĥ(D−
x ψn, D+

x ψn; D−
y ψn, D+

y ψn; D−
z ψn, D+

z ψn)

ψ̃n+2 = ψ̃n+1 − Δτ Ĥ(D−
x ψ̃n+1, D+

x ψ̃n+1; D−
y ψ̃n+1, D+

y ψ̃n+1; D−
z ψ̃n+1, D+

z ψ̃n+1)

ψ̃n+ 1
2 = 3

4
ψn + 1

4
ψ̃n+2

ψ̃n+ 3
2 = ψ̃n+ 1

2 − Δτ Ĥ
(
D−
x ψ̃n+ 1

2 , D+
x ψ̃n+ 1

2 ; D−
y ψ̃n+ 1

2 , D+
y ψ̃n+ 1

2 ; D−
z ψ̃n+ 1

2 , D+
z ψ̃n+ 1

2

)

ψ̃n+1 = 1

3
ψn + 2

3
ψ̃n+ 3

2 .

One benefit of this Runge–Kutta scheme is that relatively large CFL numbers can be used
with the WENO scheme. We use 0.3 as our CFL number. In our numerical experiments, Δτ

varies locally and at grid (x, y, z) is defined by Min [20]

Δτ = 0.3 · min(Δx+,Δx−,Δy+,Δy−,Δz+,Δz−),

where Δx±,Δy±,Δz± are taken to be Δx,Δy,Δz for non-boundary nodes.

4 Numerical Results

4.1 Computation of Interfacial Curvature and Bending Forces in 3D

A primary goal for developing a high order accurate implementation of the reinitialization
equation is to preserve the quality of geometric information stored in the distance map
at a sufficient level that the forces derived from the shape remain accurate. In problems
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Table 1 Accuracy results for the reinitialized level set function φ for example in Sect. 4.1 after 1000 iterations

‖φ − φh‖1 Order ‖φ − φh‖2 Order ‖φ − φh‖∞ Order

163 7.122 × 10−6 – 5.283 × 10−6 – 8.013 × 10−6 –

323 9.772 × 10−8 6.19 6.512 × 10−8 6.34 8.995 × 10−8 6.48

643 2.761 × 10−9 5.15 1.684 × 10−9 5.27 2.252 × 10−9 5.32

1283 4.384 × 10−11 5.98 2.659 × 10−11 5.98 3.566 × 10−11 5.98

Table 2 Accuracy results for the computation of interface mean curvature KM

‖KM − (KM )h‖1 Order ‖KM − (KM )h‖2 Order ‖KM − (KM )h‖∞ Order

163 7.100 × 10−3 – 3.754 × 10−3 – 3.139 × 10−3 –

323 5.066 × 10−4 3.81 3.183 × 10−4 3.56 3.782 × 10−4 3.05

643 2.432 × 10−5 4.38 1.509 × 10−5 4.40 2.583 × 10−5 3.87

1283 1.510 × 10−6 4.01 9.700 × 10−7 3.96 1.633 × 10−6 3.98

Table 3 Accuracy results for the computation of interface Gaussian curvature K

‖K − Kh‖1 Order ‖K − Kh‖2 Order ‖K − Kh‖∞ Order

163 2.176 × 10−2 – 1.285 × 10−2 – 1.103 × 10−2 –

323 1.141 × 10−3 4.25 8.449 × 10−4 3.93 1.142 × 10−3 3.27

643 5.559 × 10−5 4.36 3.722 × 10−5 4.50 7.691 × 10−5 3.89

1283 3.433 × 10−6 4.02 2.451 × 10−6 3.92 4.902 × 10−6 3.97

involving elastic surfaces, bending forces depend on the curvatures (mean and Gaussian) and
the surface Laplacian of the mean curvature. The simplest form for this force density (up to
a multiplication constant) is f = Δ‖KM + K 3

M − 2KMK [33]. In this section, we test our
method’s ability to preserve the accuracy of these quantities when an initial level set function
(that is not necessarily an exact signed distance map) is reinitialized.

As a first test, we consider a spherical surface defined by an initial level set function
φ(x, y, z) = x2 + y2 + z2 − (0.6)2 in the [−1, 1]3 domain. This initial exact distance
map is used as the seed for the reinitialization method described in Sect. 2. As shown in
Table 1 the reinitialized φ maintains sixth-order accuracy. Using the reinitialized φ, we then
compute the interfacial mean curvature KM and Gaussian curvature K using fourth order
accurate approximations to the first and second derivatives, as described in Sec. 5.3.1 of [4].
We compute the L1 and L2 errors in these quantities at the interface by integrating the error
over the surface using the numerical integration described in Sect. 2. The L∞ error is also
determined for nodes at the boundary. Tables 2 and 3 demonstrate fourth-order accuracy
for the curvatures. Finally, using the same approximations for the derivatives, we compute
the surface Laplacian of the mean curvature, which is found to be second-order accurate
(Table 4). As a comparison, Table 5 shows accuracy results for Δ‖KM using the fourth order
accurate scheme from [7]. Comparing these results from Table 5 with Table 9 and Table 12
in [7] shows that much higher accuracy can be achieved on a much smaller grid with our
sixth-order accurate scheme.
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Table 4 Accuracy results for the computation of the surface Laplacian of the mean curvature Δ‖KM . KM
field is extended before used to compute Δ‖KM .

L1-Error Order L2-Error Order L∞-Error Order

163 9.575 × 10−1 – 5.311 × 10−1 – 6.307 × 10−1 –

323 1.675 × 10−1 2.52 8.952 × 10−2 2.57 8.912 × 10−2 2.82

643 4.513 × 10−2 1.89 2.898 × 10−2 1.63 5.020 × 10−2 0.82

1283 9.914 × 10−3 2.19 6.825 × 10−3 2.09 1.341 × 10−2 1.90

The error is computed as
∥
∥Δ‖KM − (

Δ‖KM
)
h

∥
∥

Table 5 Accuracy results for the computation of surface Laplacian of the mean curvature using fourth-order
accurate scheme from [7].

L1-Error Order L2-Error Order L∞-Error Order

163 3.197 × 100 – 1.949 × 100 – 1.916 × 100 –

323 3.382 × 100 −0.08 1.965 × 100 −0.01 1.853 × 100 0.05

643 5.763 × 100 −0.77 5.895 × 100 −1.58 1.773 × 101 −3.26

1283 5.609 × 100 0.04 5.574 × 100 0.08 2.997 × 101 −0.76

The error is computed as
∥∥Δ‖KM − (

Δ‖KM
)
h

∥∥

As another more complicated example, we consider the red blood cell shape [11] given
by the zero level set of

φ(x, y, z) =
(
2z

R

)2

−
(
1 − x2 + y2

R2

)(
C0 + C1

x2 + y2

R2 + C2
(x2 + y2)2

R4

)2

(22)

where C0 = 0.2072,C1 = 2.0026,C2 = −1.1228 and R is the length of the large half-axis
of the RBC and is taken to be 1 here. Note that this function is not an exact signed distance
function. The zero level set for this φ is shown in Fig. 3. After initializing φ according to Eq.
(22), we reinitialize it to be a signed distance function and calculate the mean curvature KM ,
Gaussian curvature K and Δ‖KM on the surface. On this more realistic shape, our scheme
still produces fourth order accuracy for the computation of interfacial mean and Gaussian
curvatures (Tables 6, 7) and can compute Δ‖KM with second order accuracy in both the
L2 norm and maximum norm (Tables 8, 9), whereas the scheme from [7] does not provide
convergence for the computation of Δ‖KM . It is also important to note that schemes that
triangulate the surface are not convergent for the computation of Δ‖KM in the maximum
norm [11]. As previously mentioned, the surface Laplacian of the interface mean curvature
is important in the force density of an elastic surface. Many of the existing methods will
produce large errors when computing this force. Therefore, high order schemes, such as the
one proposed here, are necessary for these problems. We note that a fourth order scheme for
the computation of curvature in the level set framework in two dimension has been proposed
in [5]. This approach is based on the osculatory circle approximation, which is difficult
to implement in three dimensions and fails whenever the curvature is zero. Our approach,
however, is straightforward to implement in two or three dimensions, and simple formulae
for mean and Gaussian curvatures can be used [9]. Thus our sixth order scheme provides
a significant improvement that can enable accurate simulations of three-dimensional soft
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Fig. 3 The red blood cell shape
defined by the level set function
Eq. (22) (Color figure online)

Table 6 Accuracy results for the computation of interface mean curvature for the red blood cell shape using
our sixth order accurate scheme, where the error is defined as ‖KM − (KM )h‖

L1-Error Order L2-Error Order L∞-Error Order

163 1.678 × 100 – 7.923 × 10−1 – 8.740 × 10−1 –

323 2.856 × 10−1 2.55 1.490 × 10−1 2.41 2.511 × 10−1 1.80

643 1.998 × 10−2 3.84 1.691 × 10−2 3.14 4.728 × 10−2 2.41

1283 1.176 × 10−3 4.09 8.532 × 10−4 4.31 3.506 × 10−3 3.75

Table 7 Accuracy results for the computation of interface Gaussian curvature for the red blood cell shape
using our sixth order accurate scheme

‖K − Kh‖1 Order ‖K − Kh‖2 Order ‖K − Kh‖∞ Order

163 2.657 × 100 – 1.266 × 100 – 1.296 × 100 –

323 7.583 × 10−1 1.81 5.456 × 10−1 1.21 9.430 × 10−1 0.46

643 7.225 × 10−2 3.39 8.023 × 10−2 2.77 2.296 × 10−1 2.04

1283 3.924 × 10−3 4.20 3.519 × 10−3 4.51 1.777 × 10−2 3.69

Table 8 Accuracy results for the computation of surface Laplacian of the interface mean curvature for the red
blood cell shape using our sixth order accurate scheme.

L1-Error Order L2-Error Order L∞-Error Order

163 2.549 × 102 – 1.094 × 102 – 9.351 × 102 –

323 1.680 × 102 0.60 7.791 × 101 0.49 8.049 × 101 0.22

643 2.884 × 101 2.54 2.133 × 101 1.87 6.434 × 101 0.32

1283 4.610 × 100 2.65 3.449 × 100 2.63 1.297 × 101 2.31

The error is computed as
∥
∥Δ‖KM − (

Δ‖KM
)
h

∥
∥

objects, such as vesicles and biological cells [11]. Application of this sixth-order scheme to
vesicle shape dynamics will be presented in the future.

As a final test, we consider a surface with a kink. We initialize our level set function
φ(x, y, z) to be two merging spheres:

φ(x, y, z) = min((x2 + y2 + (z − z0)
2 − r2), (x2 + y2 + (z + z0)

2 − r2)), z0 = 0.3, r = 0.6.
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Table 9 Accuracy results for the computation of surface Laplacian of the interface mean curvature for the red
blood cell shape using fourth order accurate scheme from [7].

L1-Error Order L2-Error Order L∞-Error Order

163 2.672 × 102 – 1.156 × 102 – 9.802 × 101 –

323 2.203 × 102 0.28 1.096 × 102 0.08 1.270 × 102 −0.37

643 1.333 × 102 0.72 7.319 × 101 0.58 1.131 × 102 0.17

1283 1.338 × 102 −0.01 7.785 × 101 −0.09 1.296 × 102 −0.20

The error is computed as
∥
∥Δ‖KM − (

Δ‖KM
)
h

∥
∥

Fig. 4 Distribution of numerical error log10 |φ − φh | of the level set function on different grids. Grid size
from left to right: 16 × 16 × 32, 32 × 32 × 64, 64 × 64 × 128, 128 × 128 × 256 (Color figure online)

Then we reinitialize φ(x, y, z) to be a signed distance map on different grids and plot
log10 |φexact − φnumerical| on the surface, where φexact is the exact signed distance map and
φnumerical is the reinitializedφ.As is shown inFig. 4, near the kink, accuracy is greatly affected,
but the rate of convergence is not affected away from the kink. Moreover, as finer grids are
used, the affected region shrinks, as the inaccuracy arises due to not having a sufficient
number of nodes to properly resolve the distance map with our interpolation scheme. As the
grid spacing decreases, it is possible to resolve a larger fraction of the shape away from the
kink. Figure 5 demonstrates the deterioration of accuracy for two approaching spheres. In the
left graph of Fig. 5, the maximum error ||φ − φh ||∞ is plotted as a function of the distance
d = 2(z0 − r) between the two spheres on different grids. A visible jump in error can be
seen as the two spheres approach each other. The right graph of Fig. 5 shows that the order of
accuracy for ‖φ − φh‖∞ decreases to first order, which is expected in the presence of kinks
[20]. Adaptive mesh refinement or finite element methods [17] might help in the presence of
kinks, but this is beyond the scope of this paper.

4.2 Extrapolation of Surface Scalar Fields in 3D

Extrapolation of fields living on a surface to the embedding space, i.e. solving Eq. (3), is of
great importance inmany applications. In the level setmethod, it is commonpractice to extend
velocity fields defined only on the surface away from the interface in the normal direction.
When solving PDEs on implicit surfaces represented by level set functions [1,31], dynamical
fields have to be extrapolated to embed those PDEs in space. When those embedded PDEs
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Fig. 5 Left graph: ‖φ − φh‖∞ and distance d = 2z0 − 2r for different grids. Convergence of ‖φ − φh‖∞
for different distances d = r , 0.3r , 0.2r , 0 (Color figure online)

Fig. 6 The (0, ± 0.2,± 0.4) isosurface of ψ before and after extrapolation (Color figure online)

are of high orders, it becomes crucial to accurately extrapolate those surface fields [10].
However, this extrapolation is seldom done in an accurate way because boundary conditions
on the implicit interface are seldom treated appropriately. Often the sign function is smoothed
out in some fashion [10,31], but this regularization is not enough to prevent information from
flowing across the interface, affecting the accuracy of the scheme globally. Note that in [10],
the author shows that by using Sign(φ) = φ/

√
φ2 + h1/2 and the WENO scheme relatively

small errors are obtained on a 4002 grid. However, they did not show the convergence of
their extrapolation scheme.

Here we test our ability to accurately extend fields away from a given surface.We consider
a surface represented by the signed distance function φ(x, y, z) = √

x2 + y2 + z2−0.5 on a
[−1, 1]3 domain. Let a surface fieldψ be the z coordinate of the position vector. We initialize
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Table 10 Accuracy results for the extended surface field

‖ψ − ψh‖1 Order ‖ψ − ψh‖2 Order ‖ψ − ψh‖∞ Order

163 1.794 × 10−4 – 1.138 × 10−4 – 1.324 × 10−4 –

323 4.843 × 10−6 5.21 4.014 × 10−6 4.82 6.734 × 10−6 4.30

643 3.517 × 10−8 7.11 3.341 × 10−8 6.91 2.074 × 10−7 5.02

1283 5.611 × 10−10 5.97 5.345 × 10−10 5.97 2.932 × 10−9 6.14

Table 11 Accuracy results for the Laplacian of the extended surface field

‖Δψ − (Δψ)h‖1 Order ‖Δψ − (Δψ)h‖2 Order ‖Δψ − (Δψ)h‖∞ Order

163 2.482 × 10−2 – 1.605 × 10−1 – 1.539 × 10−1 –

323 1.423 × 10−3 4.12 1.152 × 10−2 3.80 2.231 × 10−2 2.73

643 8.935 × 10−4 3.99 7.101 × 10−4 4.02 1.917 × 10−3 3.60

1283 5.617 × 10−5 3.99 4.644 × 10−5 3.93 1.245 × 10−4 3.94

Table 12 Accuracy results for the BiLaplacian of the extended surface field

‖Δ2ψ − (Δ2ψ)h‖1 Order ‖Δ2ψ − (Δ2ψ)h‖2 Order ‖Δ2ψ − (Δ2ψ)h‖∞ Order

163 3.511 × 101 – 2.369 × 101 – 2.675 × 101 –

323 1.320 × 101 1.41 1.035 × 101 1.19 2.236 × 101 0.26

643 1.810 × 100 2.87 1.612 × 100 2.68 4.035 × 100 2.47

1283 2.985 × 10−1 2.60 3.226 × 10−1 2.32 1.288 × 100 1.65

Table 13 Accuracy results for the BiLaplacian of the extended surface field if ENO scheme from [7] is used
to treat boundary terms

‖Δ2ψ − (Δ2ψ)h‖1 Order ‖Δ2ψ − (Δ2ψ)h‖2 Order ‖Δ2ψ − (Δ2ψ)h‖∞ Order

163 3.627 × 101 – 2.390 × 101 – 2.765 × 101 –

323 1.694 × 101 1.10 1.671 × 101 0.52 4.017 × 101 −0.54

643 1.744 × 101 −0.04 1.634 × 101 0.03 4.005 × 101 0.00

1283 1.449 × 101 0.27 1.675 × 101 −0.04 6.863 × 101 −0.78

ψ to be z at all points in space, and then solve the extension velocity equation [Eq. (15) with
the Hamiltonian defined in Eq. (17)]. Figure 6 shows isosurfaces of ψ before and after
extrapolation. The extrapolated surface field is determined to sixth-order accuracy (Table
10). Likewise, the Laplacian of ψ is fourth-order accurate (Table 11) and the BiLaplacian of
the ψ is accurate to second-order (Table 12). If, instead, the ENO scheme from [7] is used,
the computation of Δ2ψ does not converge (Table 13), which clearly shows the necessity
of using a high order scheme to extrapolate any surface field whose dynamics depends on
differential operators such as the Laplacian and the BiLaplacian Indeed, the scheme presented
here will be useful for a wide range of applications involving PDEs on curved surfaces.
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4.3 Computation of Geodesic Distances on an Implicit Surface

Computation of geodesics is of interest in many applications [3,6]. A geodesic, though, is
just a distance map defined on a surface. Solving for geodesics can therefore be regarded
as a generalization of the reinitialization process to a non-Euclidean space. For example,
consider a curve represented by the intersection of two level set functions φ and ψ , where
the zero level set of φ represents the surface confining motion of the curve [3]. To compute
the signed distance function on the surface for this curve, we need to iterate to equilibrium
the following PDE on the surface [3]

∂ψ

∂τ
+ Sign(ψ0)

(∣∣∇‖ψ
∣
∣ − 1

) = 0 (23)

where∇‖ is the differential operator defined on the surface. Equation (23) is still a Hamilton–
Jacobi equation. Due to the surface differential operator it is no longer feasible to use
Godunov’s scheme to construct the numerical Hamiltonian. In [3], Local Lax–Friedrichs
(LLF) schemes were used instead, and the author claims to find first-order accuracy in one
dimension due to motion of the curve position during the iteration process. There are two
sources of numerical error. First, the LLF scheme is more dissipative than Godunov’s scheme
and will perturb the curve position. Second, the treatment of the boundary condition is not
appropriately implemented, and information flows across curve. There is no easy way to
remedy these problems, as far as we know.

Another way to solve Eq. (23) is to replace the surface differential operator ∇‖ by the 3D
Cartesian differential operator ∇, using a closest point representation of ψ [19]. The closest
point representation can be obtained by constraining the level sets of the distance map that
defines the curve, ψ , to be perpendicular to the zero level set of φ. That is, we want to solve
the 3D reinitialization equation for ψ , subject to the condition that ∇φ · ∇ψ = 0, which
is the same condition as for extending a field away from the surface. Therefore, we can
simultaneously solve the extension equation (Eq. (3)) and the reinitialization equation (Eq.
(2)) in order to determine the geodesic distance map ψ . We do this by iterating the extension
equation (Eq. (3)) before each stage of the Runge–Kutta scheme in the reinitialization time
stepping. In this way, we can use the standard reinitialization equation (Eq. (2)) in place of
the more complicated non-Euclidean reinitialization equation (Eq. (23)).

Consider a surface represented by the signed distance function φ(x,y,z)=√
x2+y2+z2

− 0.6 on a [−1, 1]3 domain. Let a closed curve Γ on this surface be the intersection of the
zero level set of φ and the zero of the function ψ(x, y, z) = e2z − 1. We then reinitialize
ψ using the procedure just described. Figure 7 shows the level curves of ψ before and after
this redistancing. As shown in Table 14, our method provides sixth order accuracy for the
computation of the geodesic distance between Γ and other points on the surface. In addition,
we are able to calculate the geodesic curvature kg of the level curves of ψ with fourth order
accuracy (Table 15). Note that the order of accuracy for ψ seems to degenerate to fifth order
as grids are refined (Table 14). This decrease in accuracy might result from accumulation of
numerical errors from the extrapolation of ψ during each reinitialization step. This will be a
subject of future research.

As a more stringent test, consider another example where the surface is still given by the
signed distance function φ(x, y, z) = √

x2 + y2 + z2 − 0.6 on a [−1, 1]3 domain, but the
curve Γ is the intersection of the zero level set of φ and the zero level set of ψ(x, y, z) =
exp

[
1.2

(
asin

(
z√

x2+y2+z2

)
+ π

12

)]
. Figure 8 shows the level curves ofψ before and after

redistancing. Tables 16 and 17 show the results of our convergence tests for the geodesics
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Fig. 7 Level curves of ψ before and after redistancing. The red curve is the zero level curve of ψ . The spacing
between neighboring black curves is 20

99 (Color figure online)

Table 14 Accuracy results for the signed distance function on a curved surface

‖ψ − ψh‖1 Order ‖ψ − ψh‖2 Order ‖ψ − ψh‖∞ Order

163 3.166 × 10−3 – 2.221 × 10−3 – 3.320 × 10−3 –

323 4.246 × 10−5 6.02 3.327 × 10−5 6.06 5.229 × 10−5 5.99

643 1.310 × 10−6 5.02 9.151 × 10−7 5.18 1.448 × 10−6 5.17

1283 4.312 × 10−8 4.93 2.928 × 10−8 4.97 6.897 × 10−8 4.39

Table 15 Accuracy results for the geodesic curvature for the level sets of ψ

‖kg − (kg)h‖1 Order ‖kg − (kg)h‖2 Order ‖kg − (kg)h‖∞ Order

163 2.772 × 10−1 – 1.851 × 10−1 – 2.147 × 10−1 –

323 2.723 × 10−2 3.35 1.987 × 10−2 3.22 2.655 × 10−2 3.02

643 8.437 × 10−4 5.01 9.341 × 10−4 4.41 3.100 × 10−3 3.10

1283 3.035 × 10−5 4.80 4.190 × 10−5 4.48 3.867 × 10−4 3.00

and the geodesic curvature, respectively. It seems that the order of convergence degrades as
the grid is refined. The convergence rate, however, is still better than that in [3]. This loss
of convergence rate is beyond the scope of current work and requires further investigation
of our implementation of the closest point method [19]. Still ,this scheme can be useful in
applications dealing with the motion of curves embedded in a surface driven by geodesic
curvatures [3].

As a final test, we compute geodesic distances on the Stanford bunny [29] (Fig. 9). The
level set representation of the bunny is obtained by the radial function method [8] on a 963

grid and is then smoothed by diffusion. The function ψ(x, y, z) = exp(x2 + y2 + (z −
0.05)2) − exp(0.0009) is used to initialize curve position on the bunny. This example shows
that we can compute geodesic distances on highly curved surfaces.
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Fig. 8 Level curves of ψ before and after redistancing. The red curve is the zero level curve of ψ . The spacing
between neighboring black curves is 20

99 (Color figure online)

Table 16 Accuracy results for the signed distance function on a curved surface

‖ψ − ψh‖1 Order ‖ψ − ψh‖2 Order ‖ψ − ψh‖∞ Order

163 9.154 × 10−4 – 7.693 × 10−4 – 2.620 × 10−3 –

323 8.714 × 10−5 3.39 7.777 × 10−5 3.31 1.400 × 10−4 4.23

643 8.170 × 10−6 3.41 7.002 × 10−6 3.47 1.415 × 10−5 3.31

1283 2.549 × 10−6 1.68 2.226 × 10−6 1.65 4.114 × 10−6 1.78

Table 17 Accuracy results for the geodesic curvature for the level sets of ψ

‖kg − (kg)h‖1 Order ‖kg − (kg)h‖2 Order ‖kg − (kg)h‖∞ Order

163 1.337 × 10−1 – 1.233 × 10−1 – 1.885 × 10−1 –

323 2.500 × 10−2 2.42 2.089 × 10−2 2.56 3.548 × 10−2 2.41

643 1.217 × 10−2 1.04 1.195 × 10−2 0.81 2.617 × 10−2 0.44

1283 8.174 × 10−3 0.57 7.740 × 10−3 0.64 2.245 × 10−2 0.22

5 Conclusion

Inmany applications of science and engineering, it is important to accurately compute surface
curvature and its derivatives in three dimensional space. In problems involving elastic sur-
faces, second derivatives of surface curvatures such asΔ‖KM are needed. Many widely used
schemes are unable to compute this geometric quantity accurately. For instance, all schemes
reviewed in [11] are based on surface triangulation and fail to compute Δ‖KM convergently.
Other level set based schemes such as those proposed in [5] are difficult to generalize to three
dimensional cases. We approached this problem in the level set framework by maintaining
accuracy of the level set function in the reinitialization process.
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Fig. 9 Geodesic distances computed on the Stanford bunny . The left panel shows the equipotential inter-
sections of ψ before redistancing, and the right panel shows the geodesics computed by our redistancing
procedure . The red curve is the intersection of the zero level set of ψ with the bunny whose position is
preserved during the redistancing procedure. The spacing between neighborhood black curves is 1

245 (Color
figure online)

In particular, we have presented a sixth-order accurate numerical scheme for Hamilton–
Jacobi equations with a level set-defined boundary condition. This work builds on the work
of Chéné and Min [7]. We showed that our method can solve the reinitialization equation of
Sussman [28] and the extrapolation equation (3) to sixth order accuracy in the L1, L2, and L∞
norms for smooth surfaces. Our numerical experiments also show that this method leads to an
interface curvature that is accurate to fourth order, which results in second order accuracy of
bending forces calculated for elastic surfaces. These schemes thus make possible an accurate
simulation of dynamical elastic surfaces in the level set framework and of other applications
in physics and engineering that require accurate computation of interface curvature. Also,
a sixth order accurate extrapolation scheme for surface fields is proposed, which allows a
very accurate closest point representation [19] of surface fields defined near the interface,
which can be a crucial component for embedding high order PDEs on a non-Euclidean
surface in space [10] and in solving the level set equation [32]. Finally, we presented a
convergent method for computing geodesics on an implicit surface. The combination of
techniques presented here can greatly improve the accuracy of simulations involving elastic
surfaces and also makes possible the simulation of the dynamics of biomembranes coupled
to concentrations of interacting, surface-bound proteins, as occurs in processes such as endo-
and exocytosis, cell division, and cell motility.
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